Главная

Лекция 3. Плоскопараллельное движение твердого тела. Определение скоростей и ускорений.

В данной лекции рассматриваются следующие вопросы:

1. Плоскопараллельное движение твердого тела.

2. Уравнения плоскопараллельного движения.

3. Разложение движения на поступательное и вращательное.

4. Определение скоростей точек плоской фигуры.

5. Теорема о проекциях скоростей двух точек тела.

6. Определение скоростей точек плоской фигуры с помощью мгновенного центра скоростей.

7. Решение задач на определение скорости.

8. План скоростей.

9. Определение ускорений точек плоской фигуры.

10. Решение задач на ускорения.

11. Мгновенный центр ускорений.

Изучение данных вопросов необходимо в дальнейшем для динамики плоского движения твердого тела, динамики относительного движения материальной точки, для решения задач в дисциплинах «Теория машин и механизмов» и «Детали машин».

 

 

Плоскопараллельное движение твердого тела. Уравнения плоскопараллельного движения.

Разложение движения на поступательное и вращательное

Плоскопараллельным (или плоским) называется такое движение твердого тела, при, котором все его точки перемещаются параллельно некоторой фиксированной плоскости П (рис. 28). Плоское движение совершают многие части механизмов и машин, например катящееся колесо на прямолинейном участке пути, шатун в кривошипно-ползунном механизме и др. Частным случаем плоскопараллельного движения является вращательное движение твердого тела вокруг неподвижной оси.

 

                  

Рис.28                                                             Рис.29

 

Рассмотрим сечение S тела какой-нибудь плоскости Оxy, параллельной плоскости П (рис.29). При плоскопараллельном движе­нии все точки тела, лежащие на прямой ММ’, перпендикулярной течению S, т. е. плоскости П, движутся тождественно.

Отсюда заключаем, что для изучения движения всего тела дос­таточно изучить, как движется в плоскости Оху сечение S этого тела или некоторая плоская фигура S. Поэтому в дальнейшем вместо плоского движения тела будем рассматривать движение плоской фигуры S в ее плоскости, т.е. в плоскости Оху.

Положение фигуры S в плоскости Оху определяется положением какого-нибудь проведенного на этой фигуре отрезка АВ (рис. 28). В свою очередь положение отрезка АВ можно определить, зная координаты xA и yA  точки А и угол , который отрезок АВ образует с осью х. Точку А, выбранную для определения положения фигуры S, будем в дальнейшем называть полюсом.

При движении фигуры величины xA и yA  и  будут изменяться. Чтобы знать закон движения, т. е. положение фигуры в плоскости Оху в любой момент времени, надо знать зависимости

Уравнения, определяющие закон происходящего движения, называются уравнениями движения плоской фигуры в ее плоскости. Они же являются уравнениями плоскопараллельного движения твер­дого тела.

Первые два из уравнений движения  определяют то движение, которое фигура совершала бы при =const; это, очевидно, будет поступательное движение, при котором все точки фигуры движутся так же, как полюс А.  Третье уравнение определяет движе­ние, которое фигура совершала бы при  и , т.е. когда полюс А неподвижен; это будет вращение фи­гуры вокруг полюса А. Отсюда можно заключить, что в общем случае движение плоской фигуры в ее плоскости может рассматриваться как слагающееся из по­ступательного движения, при котором все точки фигуры движутся так же, как полюс А, и из вращательного движения вокруг этого полюса.

Основными кинематическими характеристиками рассматривае­мого движения являются скорость и ускорение поступательного движения, равные скорости и ускорению полюса , а также угловая скорость  и угловое ускорение  враща­тельного движения вокруг полюса.


 

Определение скоростей точек плоской фигуры

Было отмечено, что движение плоской фигуры можно рассматривать как слагающееся из поступательного движения, при котором все точки фигуры движутся со скоростью  полюса А, и из вращательного движения вокруг этого полюса. Покажем, что скорость любой точки М фигуры складывается геометрически  из скоростей, которые точка получает в каждом из этих движений.

В самом деле, положение любой точки М фигуры определяется по отношению к осям Оху радиусом-вектором  (рис.30), где - радиус-вектор полюса А, - вектор, определяю­щий положение точки М  относительно осей , перемещающих­ся вместе с полюсом А поступательно (движение фигуры по отноше­нию к этим осям представляет собой вращение вокруг полюса А). Тогда

В полученном равенстве величина  есть скорость полюса А; величина же  равна скорости , которую точка М получает при , т.е. относительно осей , или, иначе говоря, при вращении фигуры вокруг полюса А. Таким образом, из предыдущего равенства действительно следует, что

.

Скорость , которую точка М получает при вращении фигуры вокруг полюса А:

,

где ω - угловая скорость фигуры.

Таким образом, скорость любой точки М плоской фигуры геометрически складывается из скорости какой-нибудь другой точки А, принятой за полюс, и скорости, которую точка М получает при вращении фигуры вокруг этого полюса. Модуль и направление скорости  находятся построением соответствующего параллело­грамма (рис.31).

                                     

Рис.30                                                             Рис.31

 

Теорема о проекциях скоростей двух точек тела

Определение скоростей точек плоской фигуры (или тела, дви­жущегося плоскопараллельно) связано обычно с довольно сложными расчетами. Однако можно получить ряд других, практически более удобных и простых мето­дов определения скоростей точек фигуры (или тела).

Рис.32

 

Один из таких методов дает тео­рема: проекции скоростей двух точек твердого тела на ось, проходящую через эти точки, равны друг другу. Рассмотрим какие-нибудь две точки А и В плоской фигуры (или тела). Принимая точку А за полюс (рис.32), получаем . Отсюда, проектируя обе части равенства на ось, направленную по АВ, и учитывая, что вектор  перпендику­лярен АВ, находим


и теорема доказана.

                       

Определение скоростей точек плоской фигуры с помощью мгновенного центра скоростей.

Другой простой и наглядный метод определения скоростей точек плоской фигуры (или тела при плоском движении) основан на поня­тии о мгновенном центре скоростей.

Мгновенным центром скоростей называется точка плоской фигу­ры, скорость которой в данный момент времени равна нулю.

Легко   убедиться, что если фигура движется непоступательно, то такая точка в каждый момент времени t существует и притом единственная. Пусть в момент времени t точки А и В плоской фигуры имеют скорости  и , не параллельные друг другу (рис.33). Тогда точка Р, лежащая на пересечении перпендикуляров Аа к вектору  и Вb к вектору , и будет мгновенным центром скоростей  так как . В  самом  деле,  если  допустить, что , то по теореме о проекциях скоростей вектор  должен быть одновременно перпендикулярен и АР (так как ) и ВР (так как ), что невозможно. Из той же теоремы видно, что никакая другая точ­ка фигуры в этот момент времени не может иметь скорость, равную нулю.

Рис.33

 

Если теперь в момент времени  взять точку Р за полюс, то скорость точки А будет

,

так как . Аналогичный результат получается для любой другой точки фигуры. Следовательно, скорости точек плоской фигуры  определяются в данный момент времени так, как если бы движение фигуры было вращением вокруг мгновенного центра скоростей. При этом

Из равенств, следует еще, что

  точек плоской фигуры пропорциональны их расстоя­ниям от МЦС.

Полученные результаты приводят к следующим выводам.

1. Для определения мгновенного центра скоростей надо знать то­лько направления скоростей  и  каких-нибудь двух точек А и В плоской фигуры (или траектории этих точек); мгновенный центр скоростей находится в точке пересечения перпендикуляров, вос­ставленных из точек А и В к скоростям этих точек (или к каса­тельным к траекториям).

2. Для определения скорости любой точки плоской фигуры, надо знать модуль и направление скорости какой-нибудь одной точки А фигуры и направление скорости другой ее точки В. Тогда, вос­ставив из точек А и В перпендикуляры к   и , построим мгно­венный центр скоростей Р и по направлению   определим направ­ление поворота фигуры. После этого, зная , найдем скорость  любой точки М плоской фигуры. Направлен век­тор  перпендикулярно РМ в сторону поворота фигуры.

3. Угловая скорость  плоской фигуры равна в каждый данный момент времени отношению скорости какой-нибудь точки фигуры к ее расстоянию от мгновенного центра скоростей Р:

.

Рассмотрим некоторые частные случаи определения мгновенного центра скоростей.

а) Если плоскопараллельное движение осуществляется путем качения без скольжения одного цилиндрического тела по поверх­ности другого неподвижного, то точка Р катящегося тела, касаю­щаяся неподвижной поверхности (рис.34), имеет в данный момент времени вследствие отсутствия скольжения скорость, равную нулю (), и, следовательно, является мгновенным центром скоростей. Примером служит качение колеса по рельсу.

б) Если скорости точек А и В плоской фигуры параллельны друг другу, причем линия АВ не перпендикулярна  (рис.35,а), то мгновенный центр скоростей лежит в бесконечности и скорости всех точек параллельны . При этом из теоремы о проекциях скоростей следует, что   т. е. ; аналогичный результат получается для всех других точек. Следовательно, в рас­сматриваемом случае скорости всех точек фигуры в данный момент времени равны друг другу и по модулю, и по направлению, т.е. фигура имеет мгновенное поступательное распределение скоростей (такое состояние движения тела называют еще мгновенно поступа­тельным). Угловая скорость  тела в этот момент времени, как видно равна нулю.

 

           

Рис.34

 

       

Рис.35

 

в) Если скорости точек А и В плоской фигуры параллельны друг другу и при этом линия АВ перпендикулярна , то мгновен­ный центр скоростей Р определяется построением, показанным на рис. 35,б. Справедливость построений следует из пропорции. В этом случае, в отличие от предыдущих, для нахождения центра Р  надо кроме направлений знать еще и модули скоростей .

г) Если известны вектор скорости  какой-нибудь точки В фигуры и ее угловая скорость, то положение мгновенного центра скоростей Р, лежащего на перпендикуляре к  (рис.35,б), можно найти как .

 

Решение задач на определение скорости.

Для определения искомых кинематических характеристик (угловой скорости тела или скоростей его точек) надо знать модуль и направление скорости какой-нибудь одной точки и направление скорости другой точки сечения этого тела. С определения этих характеристик по данным задачи  и следует начинать решение.

Механизм, движение которого исследуется, надо изображать на чертеже в том положении, для которого требуется определить соответствующие характеристики. При расчете следует помнить, что понятие о мгновенном центре скоростей имеет место для данного твердого тела. В механизме, состоящем из нескольких тел, каждое непоступательное движущееся тело имеет в данный момент времени свой мгновенный центр скоростей Р и свою угловую скорость.

Пример 8.  Тело,  имеющее  форму  ка­тушки, катится своим средним цилиндром по неподвиж­ной плоскости так, что  (см). Радиусы цилин­дров: R = 4 см  и  r = 2 см (рис.36).    .

Рис.36

 

Определим  скорости  точек  А  и  С.

Мгновенный  центр скоростей нахо­дится в точке касания катушки с плоско­стью.

Скорость  полюса С       .

Рис. 9.23.

.

 
Угловая скорость катушки

Скорости точек  А  и  В  направлены  перпендикулярно  отрезкам прямых, соединяющих эти точки с мгновенным центром скоростей. Величина скоростей:


                                                                               

Пример 9. Стержень АВ скользит концами по взаимно перпендикулярным прямым так, что при угле  скорость . Длина стержня AB=l. Определим скорость конца А и угловую скорость стержня.

Рис.37

 

Нетрудно определить направление век­тора  скорости  точки  А, скользящей по вер­тикальной  прямой. Тогда   находится на пересечении перпендикуляров  к   и   (рис. 37).

Угловая скорость  

Скорость точки А:  

Рис. 9.24.

.

 
А ско­рость центра стержня С, например,  направлена  перпендикулярно   и  равна:

.

 

План скоростей.

Пусть известны скорости нескольких точек плоского сечения тела (рис.38). Если эти скорости отложить в масштабе из некоторой точки О и соединить  их  концы  прямыми,  то получится  картинка,  которая  называется планом скоростей. (На рисунке  ).

Рис.38

 

Свойства  плана скоростей.

Рис. 9.26.

 
а)  Стороны треугольников на плане скоростей перпендику­лярны  соответствующим  прямым на плоскости тела.

Действительно, . Но на плане скоростей . Значит  причём   перпендикулярна  АВ, по­этому и .  Точно так же   и .

б) Стороны  плана скоростей  пропорциональны соответствующим от­резкам прямых на плоскости тела.

Так  как  , то отсюда  и следует, что стороны  плана скоростей пропорциональны отрезкам прямых на плоскости тела.

Объединив  оба  свойства,  можно  сделать вывод,  что план скоростей подобен  соответствующей  фигуре  на  теле и повёрнут относительно её на 90˚ по  направлению  вращения.  Эти  свойства  плана скоростей позволяют определять скорости точек тела графическим способом.

Пример 10. На  рисунке 39 в  масштабе  изображён  механизм. Известна угловая скорость  звена ОА.

Рис.39

 

Чтобы построить план ско­ростей  должна  быть  известна скорость  какой-нибудь  одной точки  и  хотя  бы  направление вектора  скорости другой. В на­шем примере можно определить скорость точки А:  и направление  её  вектора .

Рис.40

 

 

 
Откладываем (рис. 40) из точки о в масштабе  Известно направление  вектора  скорости  ползуна  В – горизонтальное. Проводим на плане скоростей из точки О  прямую I по  направлению скорости , на которой  должна  находиться  точка  b, определяющая скорость этой точки В. Так  как  стороны  плана  скоростей перпендикулярны соответствующим звеньям  механизма,  то  из  точки   а  проводим  прямую  перпендикулярно АВ  до  пересечения  с прямой I. Точка пересечения определит точку b, а значит и скорость точки В: . По второму свойству плана скоростей его стороны подобны звеньям  механизма. Точка С делит АВ пополам, значит и с должна делить аb пополам. Точка с определит на плане скоростей величину и направление скорости  (если с соединить с точкой О).

Скорость  точки  Е  равна  нулю, поэтому  точка е на плане скоростей  совпадает с точкой О.

Далее.  Должно  быть   и . Проводим эти прямые, находим  их  точку  пересечения  d.  Отрезок  оd  определит  вектор  скорости .

 

Определение ускорений точек плоской фигуры

Покажем, что ускорение любой точки М плоской фигуры (так же, как и скорость) складывается из ускорений, которые точка получает при поступательном и вращательном движениях этой фигуры. Положение точки М по отношению к осям Оxy (см.рис.30) определяется радиусом-вектором  где . Тогда

В правой части этого равенства первое слагаемое есть ускорение  полюса А, а второе слагаемое определяет ускорение ,  которое точка м получает при вращении фигуры вокруг полюса A. следовательно,

.

Значение , как ускорения точки вращающегося твердого тела, определяется как

,

где  и  - угловая скорость и угловое ускорение фигуры, а  - угол между вектором  и отрезком МА (рис.41).

Таким образом, ускорение любой точки М плоской фигуры геометрически складывается из ускорения  какой-нибудь другой точки А, принятой за полюс, и ускорения, которое точка М получает при вращении фигуры вокруг этого полюса. Модуль и направление ускорения , находятся построением соответствующего параллелограмма (рис.23).

Однако вычисление с помощью параллелограмма, изображен­ного на рис.23, усложняет расчет, так как предварительно надо бу­дет находить значение угла , а затем - угла между векторами  и ,  Поэтому при решении задач удобнее вектор   заменять его касательной  и нормальной  составляющими и пред­ставить в виде

.

При этом вектор  направлен перпендикулярно АМ в сторону вращения, если оно ускоренное, и против вращения, если оно замедленное; вектор  всегда направлен от точки М к полюсу А (рис.42). Численно же

.

Если полюс А движется не прямолинейно, то его ускорение мо­жно тоже представить как сумму касательной   и нормальной  составляющих, тогда

.

 

          

Рис.41                                                             Рис.42

 

Наконец, когда точка М движется криволинейно и ее траекто­рия известна, то можно заменить суммой .

 

Решение задач на определение ускорения

Ускорение любой точки плоской фигуры в данный  момент времени можно найти, если известны: 1) векторы скорости   и ускорения  какой-нибудь точки А этой фигуры в данный момент; 2) траектория какой-нибудь другой точки В фи­гуры. В ряде случаев вместо траектории второй точки фигуры до­статочно знать положение мгновенного центра скоростей.

Тело (или механизм) при решении задач надо изображать в том положении, для которого требуется определить ускорение соответ­ствующей точки. Расчет начинается с определения по данным задачи скорости и ускорения точки, принимаемой за полюс.

План решения (если заданы скорость и ускорение одной точки плоской фигуры и направления скорости и ускорения другой точки фигуры):

1) Находим мгновенный центр скоростей, восставляя перпендикуляры к скоростям двух точек плоской фигуры.

2) Определяем мгновенную угловую скорость фигуры.

3) Определяем центростремительное ускорение точки вокруг полюса, приравнивая нулю сумму проекций всех слагаемых ускорений на ось, перпендикулярную к известному направлению ускорения.

4) Находим модуль вращательного ускорения, приравнивая нулю сумму проекций всех слагаемых ускорений на ось, перпендикулярную к известному направлению ускорения.

5) Определяем мгновенное угловое ускорение плоской фигуры по найденному вращательному ускорению.

6) Находим ускорение точки плоской фигуры при помощи формулы распределения ускорений.

При решении задач можно применять «теорему о проекциях векторов ускорений двух точек абсолютно твердого тела»:

«Проекции векторов ускорений двух точек абсолютно твердого тела, которое совершает плоскопараллельное движение, на прямую, повернутую относительно прямой, проходящей через эти две точки, в плоскости движения этого тела на угол в сторону углового ускорения, равны».

Эту теорему удобно применять, если известны ускорения только двух точек абсолютно твердого тела как по модулю, так и по направлению, известны только направления векторов ускорений других точек этого тела (геометрические размеры тела не известны), не известны  и  – соответственно проекции векторов угловой скорости и углового ускорения  этого тела на ось, перпендикулярную плоскости движения, не известны скорости точек этого тела. 

Известны еще 3 способа определения ускорений точек плоской фигуры:

1) Способ основан на дифференцировании дважды по времени законов плоскопараллельного движения абсолютно твердого тела.

2) Способ основан на использовании мгновенного центра ускорений абсолютно твердого тела (о мгновенном центре ускорений абсолютно твердого тела будет рассказано ниже).

3) Способ основан на использовании плана ускорений абсолютно твердого тела.


Пример 11. Диск катится без скольжения по прямой. Центр его С имеет скорость  и ускорение  (рис. 43). Найдем ускорение точки А.

Рис.43

 

Угловую скорость находим с помощью мгновенного центра скоростей:

Угловое ускорение при таком движении можно найти как производную от угловой скорости. Имея в виду, что , а точка С движется по прямой, получим                  

Если С – полюс, то , где

.

Величину  ускорения  найдём  с помощью проекций на оси х и у:

Рис. 9.30.

 
Тогда .

Ускорение мгновенного центра скоростей ,

 где . 

И, так как , ускорение    и  .

Таким  образом,  ускорение  мгновенного  центра  скоростей  не равно нулю.

Пример 12. Вернёмся к примеру 9 (рис. 44). 

Рис.44

 

Найдём  ускорение точки А, полагая  т.е.

Имеем:

,               (1)

Где ,  но направление  вектора  неизвестно, неизвестно и угловое ускорение .   

Предположим,  что  вектор  направлен перпендикулярно АВ, влево.

Ускорение , конечно, направлено по траектории прямолинейного движения точки А, предположим вниз. Спроектируем векторное равенство (1) на оси х и у, получим:

   и    .

Из второго уравнения сразу находим ускорение точки А

Положительное значение   указывает на то, что направление вектора  выбрано правильно.

Из  первого  уравнения  можно  найти  ускорение  и угловое ускорение   (направления  и  также угаданы верно).

 

Мгновенный центр ускорений.

При непоступательном движении плоской фигуры у нее в каждый момент времени имеется точка Q, ускорение которой равно нулю. Эта точка называется мгновенным центром ускорений. Определяется положение центра Q, если известны ускорение  какой-нибудь точки А фигуры и величины  и , следующим путем:

1) находим значение угла , из формулы ;                

2) от точки А под углом , к вектору   проводим прямую АЕ (рис.45);

при этом прямая АЕ должна быть отклонена от  в сторону вращения фигуры, если вращение является ускоренным, и против вращения, если оно является замедленным, т. е. в сторону направления углового ускорения ;

3) откладываем вдоль линии АЕ отрезок AQ, равный                 

Рис.45

 

Построенная таким путем точка Q и будет мгно­венным центром ускорений. В самом деле, известно что

,

где численно . Подставляя сюда значение AQ  находим, что . Кроме того, вектор  должен образовывать с ли­нией AQ угол , следовательно, вектор  параллелен , но направлен в про­тивоположную сторону. Поэтому  и  .               

Если точку Q выбрать за полюс, то так как , ускорение любой точки М тела, будет

При этом численно

Следовательно, ускорения точек плоской фигуры определяются в данный мо­мент времени так, как если бы движение фигуры, было вращением вокруг мгновенного центра ускорений Q. При этом

т.е. ускорения точек плоской фигуры пропорциональны их расстояниям от мгно­венного центра ускорений. Картина распределения ускорений точек плоской фигуры в данный момент времени показана на рис.46.

Следует иметь в виду, что положения мгновенного центра скоростей Р и мгно­венного центра ускорений Q в данный момент времени не совпадают. Например, если колесо катится по прямолинейному рельсу (см. рис.47), причем скорость его центра С постоянна (), то мгновенный центр скоростей находится в точ­ке Р (), но при этом, как было показано ; следовательно, точка Р не является одновременно мгновенным центром ускорений.

                                            

Рис.46                                                                Рис.47

 

Мгновенный центр ускорений в этом случае находится, очевидно, в точке С, так как она дви­жется равномерно и прямолинейно и . Центры скоростей и ускорений сов­падают тогда, когда фигура (тело) вращается вокруг неподвижной оси.

Понятием о мгновенном центре ускорений удобно пользоваться при решении некоторых задач.

 

Вопросы для самопроверки

- Какое движение твердого тела называется плоским? Приведите примеры звеньев механизмов, совершающих плоское движение.

- Из каких простых движений складывается плоское движение твердого тела?

- Как определяется скорость произвольной точки тела при плоском движении?

- Какое движение твердого тела называется плоскопараллельным?

- Какими уравнениями задается плоскопараллельное движение?

- Как по уравнениям движения плоской фигуры найти скорость полюса и угловую скорость вращения вокруг полюса?

- Как определить скорость любой точки плоской фигуры?

- Сформулируйте теорему о проекциях скоростей двух точек плоской фигуры.

- Какие способы применяют для определения скоростей точек тела при плоскопараллельном движении?

- Что такое мгновенный центр скоростей? Как определяется величина и направление скорости произвольной точки тела при известном положении мгновенного центра скоростей и угловой скорости?

- Из каких составляющих складывается ускорение точки при плоском движении?

- Запишите формулы для вычисления касательной и нормальной составляющих относительного ускорения точки при плоском движении тела.

- Приведите определение мгновенного центра ускорений.

- При плоском движении тела в некоторый момент времени оказалось, что его точки А и В отстоят от мгновенного центра ускорений на расстояниях 5 и 10 см. Чему равен модуль ускорения точки В, если модуль ускорения точки А равен 3 м/с2? 

- Зависят ли поступательное перемещение плоской фигуры и ее поворот от выбора полюса?

- Как определяется скорость любой точки плоской фигуры?

- Покажите, что проекции скоростей точек неизменяемого отрезка на ось, совпадающую с этим отрезком, равны между собой.

- Что представляет собой отрезок, соединяющий две вершины плана скоростей?

- Какие минимальные данные необходимы для построения плана скоростей?

- Какую точку плоской фигуры называют называют мгновенным центром скоростей и каковы основные случаи определения его положения?

- Что представляет собой распределение скоростей точек плоской фигуры в данный момент?

- Как построить центр поворота плоской фигуры, зная ее начальное и конечное положения?

- Что представляет собой неподвижная и подвижная центроиды и что происходит с центроидами при действительном движении плоской фигуры?

- Как определяется ускорение любой точки плоской фигуры?

- Сформулируйте теорему об ускорениях точек плоской фигуры.

- Почему проекция ускорения любой точки плоской фигуры на ось, проходящую через эту точку из полюса, не может быть больше проекции ускорения полюса на эту ось?

- Какую точку плоской фигуры называют мгновенным центром ускорений и может ли мгновенный центр ускорений совпадать с мгновенным центром скоростей?

- Перечислите известные вам способы определения положения мгновенного центра ускорений?

- Что представляет собой картина распределения ускорений точек плоской фигуры в данный момент времени в трех случаях

а) ;

б) ;

в) .

- Как производят определение ускорений точек и угловых ускорений звеньев плоского механизма?  


e-mail: KarimovI@rambler.ru

Башкирский государственный аграрный университет

Кафедра теоретической и прикладной механики
450001, гфа, ул.50 лет Октября, д.34, корпус №3, ком.279/3

 

Рейтинг@Mail.ru Каталог-Молдова - Ranker, Statistics

Directrix.ru - рейтинг, каталог сайтов